1 Introduction

Today, Dr. Soma continued on Dissemination Quorum System. Recall the following theorem:

Theorem 1 Let BQS be a coterie over set S and let B be an adversary for S. Then, if there exists an asynchronous implementation of the SRSW storage on BQS, then BQS is a dissemination quorum system.

We started the class by proving this theorem.

2 Dissemination Quorum System (Con’t)

Proof: Suppose, for contradiction, there is a SRSW safe storage emulation based on BQS such that BQS is not a dissemination quorum system. Therefore, $\exists Q_1, Q_2 \in BQS, \exists B \in B, Q_1 \cap Q_2 \subseteq B$. Consider $Q_1 \neq Q_2$.

Since BQS is a coterie

$$Q_1 \notin Q_2 \land Q_2 \notin Q_1$$

Therefore,

$$Q_1 - Q_2 \neq \emptyset$$
$$Q_2 - Q_1 \neq \emptyset$$

Let

$$p_1 \in Q_1 - Q_2$$
$$p_2 \in Q_2 - Q_1$$

Let p_1 be a writer and p_2 be a reader and let:

$$B'_2 = B - \{p_2\}$$

Since

$$Q_1 \cap Q_2 \subseteq B \land p_2 \notin Q_1$$

We have

$$Q_1 \cap Q_2 \subseteq B'_2$$

1
Figure 1: This represents the situation where a node p_m send Token message to node j, followed by request message.

We fix $B_2 \subseteq B'_2$ such that $Q_1 \cap Q_2 = B_2$

Since $B_2 \cap B'_2 \subseteq B$

We have $B_2 \subseteq B$

Consider the Figure 1, let ex_1 be partial execution in which all processors crash at the beginning except processors in Q_1.

In ex_1, p_1 invokes $write(v)$. Since there is a quorum that contains only correct processors (Q_1), $write(v)$ eventually completes in ex_1.

In ex_2, it is a partial execution where all processors crash at the beginning except processors in Q_2.

In ex_2, p_2 invokes $read()$. Since there is a quorum that contains correct processors (Q_2), read eventually happens. By definition of a safe register, read returns ⊥.

In partial execution ex_3, processors in B_2 are Byzantine. All remaining processors in $Q_1 \cap Q_2$ are correct. Messages sent by processors from $Q_1 \setminus Q_2$ are not delivered to $Q_2 \setminus Q_1$ (until later).

In ex_3,

- p_1 invokes $write(v)$.

2
• B_2 follows protocol during $\text{write}(v)$ and $\text{write}(v)$ completes at time t. $ex_1 \sim_{Q_1-Q_2} ex_3$

• B_2 reverts to initial state at $t' > t$ and behaves as if they receive no message from $Q_1 - Q_2$.

At time $t'' > t'$, p_2 invokes $\text{read} \sim_{Q_2-Q_1} ex_3$. Since p_2 cannot distinguish ex_3 from ex_2, i.e., $ex_2 \sim ex_3$, read completes returning ⊥. This violates safeness property. Therefore, BQS is a dissemination quorum system.

Definition 1 Given adversary $B = \{B||B| < t\}$, a dissemination quorum system is a t-dissemination quorum system if its resilience is at least t.

Lemma 2 In a t-dissemination quorum system $tDQS$, all quorums intersect in at least $t + 1$ elements.

Proof: For $\forall Q_1, Q_2 \in DQS$, and any $B \subseteq S$ where $|B| = t$, $Q_1 \cap Q_2 \not\subseteq B$. So, $|Q_1 \cap Q_2| > t$.

Lemma 3 No t-dissemination quorum system can be constructed over S if $|S| \leq 3t$.

Proof: Assume, for contradiction, that there is a t-dissemination quorum system $tDQS$ over a set of processors where $n \leq 3t$. Then, by definition on t-resilient, there must be at least 2 quorums. Let $Q_1, Q_2 \in tDQS$ such that $|Q_1| \leq n - t$ and $|Q_2| \leq n - t$ and $|Q_2 - Q_1| = t$. Therefore, $|Q_2 \cap Q_1| \leq n - 2t \leq t$. So, $|Q_1 \cap Q_2| \leq t$. This is contradiction.