We assign to each operation op a tag $tag_{op} = \langle ts_{op}, cid_{op} \rangle$

write: ts_{op} is the timestamp created in TS phase.

read: $ts_{op}|cid_{op}$ equals value of maxts/maxcid received by reader.

0.1 Validity condition

We want to show that the value returned by each read is the value of the last preceding write in \prec.

Suppose not. Then, suppose $w \prec_w w' \prec r$, and r reads the value written by w (for simplicity we can assume that every write is unique).

Example: $4 \ 3 \ 5 \ 4 \ r$ then read returns 4 (the last one).

Therefore, we have $w(v_1)$ and then $r(v_1)$. If not, then there was a write in between with v_1.

We argue that there can’t be the case that $w(v_1) \prec \sigma w'(v_2) \prec \sigma r(v_1)$

$tag_w \prec \sigma \prec tag_{w'} \prec tag_r$

Since $tag_w \prec tag_{w'}$, the maxts computed in TS phase by write w is less than that of write w'. Let Q_w and $Q_{w'}$ be the write quorums for w and w' that w and w' write to in their write phases.

Let Q_r be the read quorum that read r receives from in the read phase.

$Q_r \cap Q_w \neq \emptyset$, and $Q_r \cap Q_{w'} \neq \emptyset$. The maxts received by read r should be $\geq (ts_w, ts_{w'})$.

Since $ts_{w'} \succ ts_w$, read r cannot return value written by w.

1 Byzantine Quorum Systems

Simple non-empty intersections between quorums are not sufficient to guarantee consistency. In particular, if the intersection between two quorums contains a single process that is byzantine, then there is a problem.

Byzantine quorum systems are specified not only with respect to a set of processors S, but also assuming specific set system over S called a monotone adversary.
Definition 1 (Adversary) Given a set S, a set system \mathcal{B} is an adversary for S iff $B \in \mathcal{B} \land B' \subseteq B \Rightarrow B' \in \mathcal{B}$.

Note: the adversary is defined to capture all possible combinations of simultaneously Byzantine processes.

We assume that an adversary for S contains as its elements all possible subsets of S whose elements can be simultaneously Byzantine in any given execution.

1.1 Threshold Adversary

We denote by \mathcal{B}_t a threshold adversary that contains all subsets of S of cardinality at most t, i.e.

$$\mathcal{B}_t = \{Q \subseteq S : |Q| \leq t\}.$$

We define a kind of Byzantine Quorum Systems called Dissemination Quorum Systems (DQS) [Malkhi, Reiter, '98].

Definition 2 (Dissemination Quorum Systems) Given a set S and an adversary \mathcal{B} for S, a quorum system DQS is a dissemination quorum system over S iff

$$(\forall Q_1, Q_2 \in \text{DQS}) (\forall B \in \mathcal{B}) Q_1 \cap Q_2 \not\subseteq B.$$

assuming "authenticated Byzantine model".

Theorem 1 Let BQS be a coterie over set S and let \mathcal{B} be an adversary for S. Then, if there exists an asynchronous implementation of the SWSR storage based on BQS, then BQS is a dissemination quorum system.