Lemma 1 in every configuration, the following is true:

(a) at most one token has $\text{hasToken} = 1$
(b) if no process has $\text{hasToken} = 1$, then there is exactly one token message in transit
(c) if any process has $\text{hasToken} = 1$, then there is no message in transit
(d) if $\text{status}_i = \text{CS}$ then $\text{hasToken}_i = 1$
(e) if $\text{status}_i = \text{ES}$ then i appears exactly once in RQ_i
(f) if $\text{status}_i \neq \text{ES}$ then i is not in RQ_i

$C_i \xrightarrow{c_{i+1}} C_{i+1}$

Theorem 2 The LRME algorithm satisfies ME

Proof: Since if a process i is in CS, then $\text{hasToken} = 1$ and by Lemma 1 no two processes can simultaneously hold $\text{hasToken} = 1$ and Thm follows.

To prove the fairness property, we consider the chain of requests initiated by a node in the ES and show the token travels around the network causing requests to move to the heads of their queues, so eventually any node can enter CS.

Lemma 3 Let i and j be neighboring nodes.

(a) if neither i nor j are token-holders, then i and j are link-consistent;

(b) if i is the token-holder and has completed MakeOG/AckOG handshake since then, then i and j are link-consistent.

Definition 1 A node i is token-holder if either $\text{hasToken}_i = 1$ or a Token message is in transit from i to a neighbor of i.
Definition 2 Nodes i and j are link-consistent if either $i \in OG_j$ and $j \in IC_i$, OR $i \in IC_j$ and $j \in OG_i$.

Lemma 4 For every configuration C_t of the execution, \vec{G}_t is a token-oriented DAG.

Definition 3 The directed link (i, j) is in \vec{G}_t iff $(i, j) \in E$ and either: (1) j is token-holder or (2) neither i nor j are token-holders and $j \in OG_i$ (By lemma 3, $i \in IC_j$).

Proof: (of lemma 4) Proof is by induction on sequence of configurations. Basis is obvious For inductive step, assume \vec{G}_t is token-oriented. We prove \vec{G}_{t+1} is token-oriented.

Suppose in the event between C_t and C_{t+1} node j receives a Token message from node i. Then token holder changes from i in C_t to j in C_{t+1}. By Lemma 3, i is link-consistent with its other neighbors. Thus, for every neighbor $k \neq j$, the link (i, k) does not change direction between C_t and C_{t+1}. All links incident on j become incoming to j in \vec{G}_{t+1}, so j becomes a sink. Since i was previously the only sink, and it’s no longer a sink, therefore j is the only sink.

This doesn’t create a cycle since only the links incident on j change the direction, so j will be a part of any new cycle. But j is a sink, so it cannot be a part of a cycle.

Lemma 5 The following are true in every configuration C_t:

(a) if $i \in RQ_j$ or a Request message is in transit from i to j, then $(i, j) \in \vec{G}_t$

(b) Suppose $|RQ_i| > 0$ and i is not a token-holder. Then, there is a neighbor j of i s.t. exactly one of these hold:

(i) exactly one Request message is in transit from i to j and i is not in RQ_j OR
(ii) no Request message is in transit from i to j, and exactly one copy of i is in RQ_j.

Also, for every neighbor $k \neq j$, there is no Request message in transit from i to k, and i is not in RQ_k.

(c) If $|RQ_i| = 0$ then there is no Request message in transit from i and i is not in RQ_k for any neighbor k.

(d) If i is the token-holder, then i is not on RQ_k for any neighbor k, and no Request message is in transit from i. Also, if $\text{hasToken}_i = 1$, then i is not in RQ_i.

Given a configuration a request chain for any node i is a maximum-length sequence of node identifiers $<p_1, p_2, \ldots, p_m>$ s.t. $i = p_1$, and $p_l \in RQ_{p_{l+1}}$ for each $l, 1 \leq l \leq m$.

Lemma 6 In every configuration C_t of the execution, there is exactly one request chain for each node i and it contains no repeated id’s.