Theorem 1 If the input graph to FR is acyclic, then the output is acyclic and destination-oriented.

Proof: Lemma 3 states that FR terminates, so there is a final graph in which at most one vertex, \(D \), is a sink. By Lemma 4, if input graph is acyclic, so is the final graph. By Lemma 1, \(D \) is a sink, so by Lemma 2, the graph is \(D \)-oriented.

1 Partial Reversal Algorithm (PR)

Idea: Set of links to be reversed is computed as follows. For each sink in chosen set \(S \) of sinks, link \((u, v)\) is reversed by \(v \) iff the link has not been reversed by \(u \) since the last iteration in which \(v \) took a step.

1.1 Algorithm - Partial Reversal (PR)

Require: Directed graph \(\tilde{G} = (V, \tilde{E}) \) with distinguished vertex \(D \).

1. for each \(v \in V \) do
2. \(\text{list}[v] \leftarrow \emptyset \)
3. end for
4. while \(\tilde{G} \) has a sink other than \(D \) do
5. choose some non-empty subset \(S \) of sinks in \(\tilde{G} \) s.t. \(D \not\in S \)
6. for all \(v \in S \) do
7. if \(N_{\tilde{G}}(v) \neq \text{list}[v] \) then
8. reverse the direction of all links incident on \(v \) whose source is not in \(\text{list}[v] \)
9. else
10. reverse the direction of all links incident on \(v \)
11. end if
12. for all \(u \) such that \((u, v)\) was just reversed do
13. add \(v \) to \(\text{list}[u] \)
14. end for
15. \(\text{list}[v] \leftarrow \emptyset \)
16. end for
17. end while

Lemma 2 PR terminates.

Proof: Suppose, for contradiction, there is some execution of PR that does not terminate. Let \(W \) be the set of vertices that are chosen infinitely often in \(S \). Since \(V - \text{finite} \Rightarrow W \neq \emptyset \). Also, \(D \in V - W \Rightarrow V - W \neq \emptyset \).

Since \(G \) is connected, \((\exists u \in W, v \in V - W) (u, v) \in E \). Let \(t \) be the iteration at which \(v \) takes its last step (if \(v \) takes no steps, then \(t = 0 \)). We claim that vertex \(u \) reverses \((v, u)\) in either the first or the second step it takes after iteration \(t \).
Suppose \(u \) does not reverse \((v, u)\) in its first step after iteration \(t \). At the end of this step, \(\text{list}[u] \) is emptied. Since \(v \) takes no more steps, \(v \) is never later added to \(\text{list}[u] \).

Then, when \(u \) takes its second step after iteration \(t \), \(v \) is not in \(\text{list}[u] \), so the link \((v, u)\) is reversed to be directed from \(u \) to \(v \).

Thus, after at most 2 steps by \(u \) after iteration \(t \), edge \((u, v)\) remains directed away from \(u \), so \(u \) never becomes a sink again, so takes no more steps, a contradiction.

Consider the following example of PR algorithm:

In comparison, FR algorithm for the same problem is the following:

Remark 3 PR preserves acyclicity, but this result is harder to prove, and the proof is omitted here.

2 Vertex Labels

To implement GLR, Gafni&Bertsekas proposed using vertex labels, or heights. The labels are chosen from a totally ordered set. The vertex labels are used to induce an orientation \(\vec{G} \) of an undirected graph (link between \(u \) and \(v \) is directed from \(u \) to \(v \) \((u \rightarrow v)\) iff the label of \(u \) is greater than the label of \(v \)).

Therefore, a sink is a vertex whose label (height) is a local minimum.

Remark 4 It’s implied here that every vertex knows the labels of its neighbors.

Definition 1 Let \(L \) be a totally ordered, countably infinite set of labels. We partition it into a disjoint collection \(\{L_v | v \in V\} \) of subsets of labels for each vertex (for example, ordered pairs with a node name as an element of a pair) such that \((\forall a \in L) (\forall v \in V) (\exists a_v \in L_v) a < a_v\).

The last condition in definition 1 guarantees that each \(L_v \) is unbounded in \(L \). Without such a condition there might be a situation when we will be unable to reverse an incoming link to a node due to inability to pick big enough label for that node.

Since the \(L_v \)'s are disjoint, no two vertices have the same label, so the direction of edges is always well-defined.