1 Introduction

Last time we saw that two-processor (wait-free) consensus cannot be solved by using just read/write registers. This gives read/write registers a consensus number of 1 and puts them in level 1 of the consensus hierarchy.

In this lecture we look at some objects that have a consensus number ≥ 2.

2 Test and set

Theorem 1 Theorem: Test and Set can solve two-processor consensus.

Proof: An algorithm to solve two-processor consensus using a Test and set register (and read/write registers) is given below.

Algorithm 1 Code for Processor P_i, $i = 0,1$.

1: $val[i] = x_i$
2: if test&set(R) then
3: \hspace{1cm} $y_i := x_i$
4: else
5: \hspace{1cm} $y_i := val[1 - i]$
6: end if

In line 1 above, val is a 2-element array, implemented using two read/write atomic registers.

Theorem 2 Test and Set cannot implement three-processor consensus.

Proof Hint: Use case analysis as in the infinite bivalency sequence for Read/Write registers. It follows from the above two theorems that test and set objects have a consensus number of 2.
3 FIFO Queue

Theorem 3 2-dequeuer FIFO queue can solve two-processor consensus.

Proof: An algorithm to solve 2-processor consensus using a FIFO queue (and read/write registers) is given below.

Algorithm 2 Code for Processor P_i, $i = 0, 1$.

Initially: Queue $Q = \langle \text{Win, Lose} \rangle$

1: $val[i] = x_i$
2: $outcome := \text{deq}(Q)$
3: if $outcome = \text{Win}$ then
4: $y_i := x_i$
5: else
6: $y_i := val[1 - i]$
7: end if

In line 1 above, val is a 2-element array, implemented using two read/write atomic registers.

Corollary 4 There is no wait-free simulation of a FIFO Queue with read/write objects for any number of processors.

This follows from the above algorithm, because if there was a wait-free simulation of FIFO queue with read/write registers, then there would be a 2-processor consensus algorithm using only read/write objects—which is a contradiction.

Theorem 5 There is no three-processor, wait-free consensus algorithm using only FIFO queues and read/write objects.

Proof: We will prove that in any bivalent configuration, there exists at least one non-critical processor. The proof then follows using an inductive construction similar to the one used in the read/write impossibility argument of the previous lecture.

Let C be some bivalent configuration, assume for contradiction that all three processors P_0, P_1 and P_2 are critical in C, i.e. $P_0(C)$, $P_1(C)$ and $P_2(C)$ are all univalent. At least two of these need to have different decision values, because C is bivalent. Without loss of generality, let $P_0(C)$ be 0-valent and $P_1(C)$ be 1-valent. Let us analyze the various cases based on the next step taken by P_0 and P_1 in C:

Case 1: They either access different registers or both read from the same register. This is same as case 1 in the proof for read/write objects in the previous lecture.
Case 2: One processor reads and the other writes to the same register. This is same as case 2 in the proof for read/write objects in the previous lecture.

Case 3: Both processors dequeue. Referring to Figure 1, it is clear that the queues in configuration D and E will be identical. Since the state of processor P_2 is also identical in D and E, therefore $D \overset{P_2}{\Rightarrow} E$. But, as D is 0-valent and E is 1-valent, $D \overset{P_2}{\Rightarrow} E$ is a contradiction to Lemma 2 of the previous lecture.

Case 4a: One processor enqueues while the other dequeues with a non-empty initial queue. Without loss of generality let P_0 enqueue and P_1 dequeue. From Figure 2, it is clear that the actions of P_0 and P_1 will ‘commute’ to end up in the same configuration F. But this implies that F is both 1-valent as well as 0-valent, which is a contradiction.

Case 4b: One processor enqueues while the other dequeues with an empty initial queue. Without loss of generality let P_0 enqueue and P_1 dequeue. Referring to Figure 3, it is clear that the queue is empty in either F or E, and since the state of processor P_2 is identical in F and E, therefore $F \overset{P_2}{\Rightarrow} E$. But, as F is 0-valent (reachable from D) and E is 1-valent, $F \overset{P_2}{\Rightarrow} E$ is a contradiction to Lemma 2 of the previous lecture.
Figure 3: Case 4b—P_0 enqueues and P_1 dequeues with empty queue.

Case 5: P_0 and P_1 both enqueue. Let P_0 enqueue a, and P_1 enqueue b, with $k - 1$ elements initially in the queue of configuration C. Referring to Figure 4, $E = P_1(P_0(C))$ and $E' = P_0(P_1(C))$.

Consider a finite P_0-only schedule, σ, starting from E which results in P_0 deciding 0. Such a schedule exists because of wait-free-ness. Let σ' be the longest prefix of σ which does not contain the dequeue of the k^{th} element by P_0. We will now show that σ' is not equal to σ, i.e. σ must contain a dequeue of the k^{th} element.

Applying σ' to both E and E' gives us $\sigma'(E)$ and $\sigma'(E')$. Note that $\sigma'(E')$ is admissible, because of the following:

1. the state of P_0 was the same in E and E', and
2. the first $k - 1$ elements in the queue are identical in both E and E', and
3. σ' contains fewer than k dequeues.

Clearly, the state of P_0 is the same in $\sigma'(E)$ and $\sigma'(E')$. This means that P_0 cannot have decided at the end of σ'. Thus σ must contain at least one more step than σ'. By the definition of σ', the next step in σ following σ' has to be a dequeue of the k^{th} element. We let P_0 take this next step to reach configurations F and F' by dequeuing, respectively, a from the queue in $\sigma'(E)$, and b from the queue in $\sigma'(E')$. Again, note that this next step is legal in $\sigma'(E')$ because the state of P_0 is the same in $\sigma'(E)$ and $\sigma'(E')$. Note that elements b and a are now at the head of the queue in F and the queue in F' respectively—while all other elements are identical in both queues.

Now, consider a finite P_1-only schedule starting from F which results in P_1 deciding 0. Again, such a schedule exists because of wait-free-ness. Let τ' be the longest prefix of τ which does not contain a dequeue by P_1. We will now show that τ' is not equal to τ, i.e. τ must contain a dequeue.

Applying τ' to both F and F' gives us $\tau'(F)$ and $\tau'(F')$. Note that $\tau'(F')$ is admissible, because of the following:
1. the state of P_1 was the same in F and F', and

2. τ' contains no dequeues, so the differences in the queues of F and F' (only in the head element, actually) do not matter.

Clearly, the state of P_1 is the same in $\tau'(F)$ and $\tau'(F')$. This means that P_1 cannot have decided at the end of τ'. Thus τ must contain at least one more step than τ'. By the definition of τ', the next step in τ following τ' has to be a dequeue. We let P_1 take this next step to reach configurations G and G' by dequeuing, respectively, b from the queue in $\tau'(F)$, and a from the queue in $\tau'(F')$. Again, note that this next step is legal in $\tau'(F')$ because the state of P_1 is the same in $\tau'(F)$ and $\tau'(F')$.

With the removal of the differing head elements, all elements are identical in the queue of G and the queue of G'. Since the state of P_2 is also identical in G and G'—as it has taken no steps since C—therefore $G \not\sim G'$. But, as G is 0-valent and G' is 1-valent (reachable from D and D' respectively), $G \not\sim G'$ is a contradiction to Lemma 2 of the previous lecture.

Figure 4: Case 5—both enqueue.
4 Compare and Swap

This object has a consensus number of ∞, since it can solve n-processor consensus for any n.

4.1 Sequential specification

\texttt{compare\&\texttt{swap} (X: memory address; old, new: value) returns value}

1: previous := contents of X
2: \textbf{if} previous = old \textbf{then}
3: contents of X := new
4: \textbf{end if}
5: return previous

4.2 Implementation of consensus for any number of processors

The following algorithm shows how a compare and swap object can be used to solve n-processor consensus, for any n.

\begin{verbatim}
Algorithm 3 Code for Processor \texttt{P}, 0 \leq i \leq n - 1
Initially: contents of \texttt{First} = ⊥
1: v := \texttt{compare\&\texttt{swap}}(First, ⊥, \texttt{x}_i)
2: \textbf{if} v = ⊥ \textbf{then}
3: \quad y_i := \texttt{x}_i
4: \textbf{else}
5: \quad y_i := v
6: \textbf{end if}
\end{verbatim}

References